

Prompting Cultural Equivalence: A Comparative Analysis of Baker's Translation Models in Official and AI Translation of Thai Movie Titles

Mongkolchai Tiansodeenon^{*}, Kitti Chaloemchatvarakorn, Pimphimook Klamprabutr,

Subantitha Singreaung, Waranya Torprasitkul

Faculty of Liberal Arts, Rajamangala University of Technology Krungthep

E-mail: mongkolchai.t@mail.rmutk.ac.th*

*Corresponding author

Abstract

This study aimed to identify Baker's translation strategies used to translate Thai movie titles by the official versions and compare the translations among the official versions and three different types of AI, specifically, Google Translate, ChatGPT, and Google Gemini. It also investigated how ChatGPT and Google Gemini translate movie titles differently when using various prompts, in accordance with Baker's translation strategies. The titles of the movies were selected from GTH/GDH movies under GDH 559 Co., Ltd. The population of this study was sixty-nine movie titles from the years 2004 to 2025. The rationale for selecting the titled movies was that they portray a wealth of Thai cultural themes. The purposive sampling technique was used to select movie titles. Sixty-nine movie titles were narrowed down to twenty because of the availability of the official English translation version. Baker's translation strategies were employed as a methodological tool. Percentage was used to analyze the data. The results revealed that the official version usually translates Thai movie titles using a more general word (MG) to include cultural nuance and captivate audiences. Google Translate, ChatGPT's simple prompt, and Google Gemini all employed the most paraphrased word strategy for translation (PR). This analysis indicated that these techniques focused on words, which may have translated accurately but may not have had enough cultural and emotional appeal to engage viewers. Finally, the application of simple and more complex translation instructions demonstrated different translation results. The basic prompt was translated by using paraphrase with related words, while the more elaborate prompts revealed more advanced translations.

Keywords: Baker's translation strategies, Translation of movie titles, Comparative translation analysis

Introduction

As the world becomes more connected, the demand for effective translation in science and technology has never been greater (Saeed & Hameed, 2024; Yuxiu, 2024). Translation is essential for helping people share knowledge and information across language barriers. It allows academics and professionals to share new ideas and developments with people all around the world (Saeed & Hameed, 2024). However, the advent of artificial intelligence has raised concerns about whether it can entirely replace humans (Ahrenberg, 2017). One reason is that intelligence translation has rapidly developed in the past few decades (Shahmerdanova, 2025), and it has become more logical and even closer to human translation. It intends to preserve cultural identity and enable international audiences to access content more clearly (Moneus & Sahari, 2024). On the contrary, human translation frequently has a greater goal, which involves making documents that obey the language rules of the target culture and conform to what the readers are expected to know (Ahrenberg, 2017). Therefore, translations must explicitly explain the cultural context of the source language to the readers of the target language to improve their understanding of the variations between the two cultures (Sukwises, 2024).

Translation in the film industry, however, might not only focus on language rules since it entails the culture of that particular country. It offers a showcase of evidence of cross-cultural communication because it involves the collaboration and co-creation among production team members from various regions (Futeng, 2024). To translate film, it requires not only linguistic proficiency but also an in-depth understanding of cultural differences to ensure that the essential message of the original film is maintained and connects with the new audience. Film translation improves the experience of watching a movie and makes people more interested in other ways of conveying stories (Futeng, 2024). Therefore, movie or film translation is crucial to bridge the language and cultural barriers and allow audiences to fully comprehend the content of the film. Film translation represents a common method to convey cultural differences and meaning between languages. It involves an interpretative process aimed at conveying both the meaning and style of the original source material in a target language, assuring conformity with the audience's norms and expectations (Maharani et al., 2025).

It is evident that AI-powered tools offer language services available to individuals as well as small enterprises all around the world, and these tools modify the way people communicate with each other. It also reduces costs by providing real-time translations for text, speech, and images (Koehn, 2020). On the other hand, there are still numerous limitations and concerns. The primary reasons involve the inability of AI to completely comprehend the true meaning of language and differentiate the relationship between language and culture (Yuxiu, 2024). Moreover, Zaid and Bennoudi (2023) argued that machine translation algorithms face difficulty in addressing

linguistic complexities, contextual nuances, and complex sentence structures, particularly prevalent in religious and culturally significant texts. Consequently, AI translation frequently results in misinterpretations and translation inaccuracies (Shahmerdanova, 2025).

Numerous studies have examined the efficacy of AI translation. Syavira et al. (2025) investigated the techniques and accuracy of human translation versus DeepL Translate in the translation of idioms from the Wednesday series. The study's results revealed that a professional human translator, who has an extensive understanding of L1 and its culture, produced accurate and commonly used daily expressions; on the contrary, DeepL Translate is limited to translating only the words, phrases, and clauses in its database, which may not always be accurate. Moreover, Kanchanakas and Rungruangthum (2024) investigated the errors produced by Google Translate to translate English idioms into Thai at the sentence level and determine the accuracy of the translation. The findings were that one hundred eighty-five errors were produced by Google Translate. Word-by-word translation was utilized the most, followed by misinterpretation, incomplete translation, and grammatical errors, respectively. Incorrectly. Zaid and Bennoudi (2023) examined the accuracy of ChatGPT and Google Translate in translating religious literature. The results aligned with the research conducted by Syavira et al. (2025), which demonstrated that human translation consistently surpassed machine translations because human translation can preserve depth, cultural relevance, and nuanced comprehension. On the other hand, machine translations tend to be concise and fail to encompass crucial cultural elements.

It is convincing that AI might be able to entirely replace human translation. Several scholars also applied the eight principles of Baker's translation strategies in their analyses. Fadwati (2021) employed Baker's strategy to analyze idiomatic expressions in *Fast & Furious*: Hobbs and Shaw's movie subtitles. The results revealed that translation by phrase was the most preferable strategy, followed by using an idiom of similar meaning but similar form, which ranked second. Seifi et al. (2022) examined the translation of English idioms in the Persian dubbing of the comedy films "The Grand Budapest Hotel" and "21 Jump Street," applying Baker's (1992) strategies. The results demonstrated that paraphrasing was the most frequently used method to translate, while employing an idiom with a comparable meaning and form was the least common way to do so in the Persian dubbing of the two comedy movies. Pasaribu and Siregar (2022) provided the reasons for employing translation strategies in JavaHeat. The results showed that paraphrasing with a related word was the greatest reason, followed by translation by omission, translation by example, and translation by a more general word. Translation by a more neutral or less expressive word was the most unfavorable.

Several scholars apply Baker's strategies to analyze translation, but few studies compare translations of Thai film titles by artificial intelligence and humans. Therefore, this study sought

to enhance our understanding of translation by distinguishing whether the translations originated from the official website, humans, or artificial intelligence.

Research Objectives

1. To investigate Baker's translation strategies used to translate the movie titles to the official version.
2. To investigate how ChatGPT and Google Gemini translate movie titles differently when using various prompts, in accordance with Baker's translation strategies.
3. To compare the translation results of Thai movie titles between the official and artificial intelligence versions.

Baker's Translation Strategies

The procedure of translation begins with the original text, after which the translator converts the source language into a written form that is accessible to the target reader. However, translation involves more than just words and grammar; it is also deeply interrelated with culture, as language and social norms are closely connected (Wongseree, 2021). For this reason, Baker (2018) suggested that equivalence has a hierarchy or range of levels. One of its levels is at the word level. It implies that the word level is equivalent in the source and target languages. In the process of translating a text, a translator may encounter a word that is difficult to translate due to the absence of an exact or appropriate equivalent in the target language. This refers to the appropriate equivalence in meaning within the target language. Therefore, "non-equivalence" is the term used to explain the example of translation at the word level. In addition, Baker (2018) asserted that professional translators attempted to identify synonyms (substitution terms) when the target language lacks an equivalent term. Therefore, Baker offered eight translation strategies to solve these translation issues as follows:

1. Using a more general word (MG): This strategy involves the use of more general words or selecting a word with a higher semantic level to substitute the target word.
2. Using a more neutral/less expressive word (MN): This strategy aims to address issues by substituting more expressive words with less expressive ones when translating into the target language.
3. Using cultural substitution (CS): The third strategy deals with the difficult word to translate due to its cultural significance. Therefore, it suggests replacing a specific cultural word with the word that has a comparable effect in the target language.

4. Using a loan word or a loan word with optional explanation (LW): This strategy also applies to culturally specific words and certain contemporary concepts. It is recommended to use a loan word with or without an explanation. Translators may explain the words' meanings and then use the same term as the source text.

5. Using paraphrasing using a related word (PR): This strategy is used when translators encounter challenging words in the source text. For this reason, the translator might apply a different word structure or part of speech with a related meaning to translate the target language.

6. Using paraphrasing using unrelated words (PU): This strategy is similar to the previous strategy, but it is recommended to use a paraphrasing method to translate to the target text without using any words relevant to the source text.

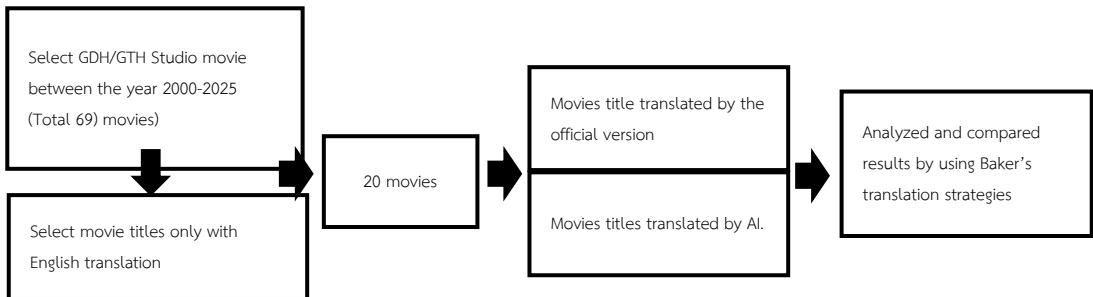
7. Using an omission (OM): This strategy is intended for contexts that are fully understood and contain challenging words that can be erased. In certain cases, the deletion of the word does not change the meaning of the intended text.

8. Using an illustration (IL): The final strategy is to provide illustrations to readers because they might be more comprehensible than searching for an equivalent word to translate to the target text.

Several translation studies have employed Baker's translation strategies. Habibi (2025) intended to identify the quality of translated cultural words and the translation procedures employed in the film "Puss In Boots: The Last Wish" by applying Nababan's TQA and Baker's Translation Strategies. Seifi et al. (2022) applied Baker's translation strategies to analyze the translation of English idioms in the Persian dubbing of two comedy films, "The Grand Budapest Hotel" and "21 Jump Street." Fadwati (2021) applied Baker's Strategies to ascertain the translation method employed in the subtitles of the film Fast & Furious: Hobbs & Shaw.

Artificial Intelligence in Translation

AI and discourse have recently continued to impact our daily lives, so it is crucial for researchers to consider performing critical analysis or engaging in thorough investigations of AI within a variety of contexts. This is because this interdisciplinary discipline is at the core of technological advancement that influences several sectors and reshapes understanding of the world (Moneus & Sahari, 2024). AI translation systems are computer systems that translate content with or without human intervention. These systems are capable of serving translation, bilingual, multilingual, unidirectional, or bidirectional purposes. AI uses a database to store translated segments, which it then utilizes to translate a file containing those segments. Before they translate a text, they look at how many translated parts they need to reuse. They examine patterns and similarities between all languages, and then they create a new language that


combines these common structures. There are two steps in this process: first, they represent the synthesized language, and second, they convert the text into the same concept in the target language. The last step is to translate the texts into the target language (Yanisky-Ravid & Martens, 2019).

However, the accuracy and speed of translation technology have been considerably enhanced because of the introduction of deep learning technology and the enhancement of natural language processing (NLP) technology (Yuxiu, 2024). This instance demonstrates the transition from traditional rule-based and dictionary-based machine translation to data-driven machine translation. The algorithm model can be automatically improved through machine translation (MT) to achieve more precise translations, and it also simultaneously lowers labor and time expenditures (Chen et al., 2022). The primary components of translation using technology are that machine translation (MT) and computer-assisted translation (CAT) are prominent. At its foundation, machine translation (MT) is an algorithmic model that translates source text to the target language. CAT is the application of computer-assisted translators for translation, which encompasses functions such as terminology administration, cross-reference translation, context analysis, and multilingual translation. This procedure has the potential to increase the accuracy and effectiveness of translation (Pan et al., 2022).

Applying AI in translation has captured the interests of several researchers. Shahmerdanova (2025) explored and attempted to identify the opportunities and challenges of AI translation. The findings revealed that neural machine translation (NMT) has enhanced accuracy and efficiency in translation. AI could also facilitate real-time communication across languages. However, AI translation also demonstrates significant challenges, including difficulties such as ethical concerns, cultural sensitivity, and idiomatic expressions in sensitive disciplines like legal and medical translation. Moreover, Al-Wasy and Mohammed (2024) also investigated how AI models and humans translate Arabic euphemisms into English. The study also examined how these strategies impact the accuracy of both human and AI translators when translating from Arabic to English and vice versa. The results were that human translation typically employs more general terms and cultural replacement strategies, whereas AI models primarily utilize borrowed words. Finally, this study concluded that human translators outperformed AI models in cultural replacement.

Research Methodology

This study applied quantitative research design. It aimed to analyze and compare the translation of the movie titles between the official websites and Artificial intelligence (AI) namely, Google Translate, ChatGPT and Gemini. The research design of this can be illustrated below:

The study compared the translation outcome between the official versions, which were translated by humans, and three different types of AI (Google Translate, ChatGPT, and Gemini). The movie titles used in this study were from GDH/GTH Studio movies, which were renowned in the Thai movie industry from 2000 to 2025. There were 69 movie titles. To select the samples, this study selected the movies only with an English translation. There were 20 movie titles. The translated official versions were compared with AI, namely Google Translate, ChatGPT, and Gemini, by applying two different prompts to give commands for Google Translate, ChatGPT, and Gemini to facilitate the comparison of translations from both humans and AI. Finally, this study applied Baker's translation strategies to analyze and compare the translation results between the official versions and AI.

Data collection

The titles of the movies were selected from GTH/GDH movies under GDH 559 Co., Ltd. It was a film production studio in Thailand that was completely integrated as a joint venture between GMM Grammy Public Company Limited and Hub Ho Hin Bangkok Company Limited. The rationale for selecting the titles of movies from this film studio was that GTH/GDH movies featured neither aggressive nor political-related content. They portrayed a wealth of Thai cultural themes. The titles of movies used for this study ranged from the year 2004 to 2025. There were 69 movies, which narrowed to 20 movie titles because only the official English translation version was available. The data was collected through AI translation. This study used two different prompts to provide commands to ChatGPT and Gemini to translate the movie titles. The first prompt was “Translate this name into the name of the movie,” and the second prompt was “Act as an expert translator who is competent in movie titles and speaks both Thai and English fluently and possesses extensive knowledge of the cultures of both markets. Your main job is to come up with original, economically successful English movie titles for the Thai film business that

appropriately show the genre and tone of the movie for a Western English-speaking audience." The names of the movie titles can be presented in Table 1.

Table 1 The Movie Titles

Year	Movie titles	Official version	Year	Movie titles	Official version
2004	แจ้ว (Jaeo)	Jaew	2009	ความจำสั้นแต่รักฉันยาว (Khwam Jam San Tae Rak Chan Yao)	Best of Times
2006	เก้า เก้า (Kao Kao)	The possible	2009	หนีตามกาลิเลโอ (Nee Tam Galileo)	Dear Galileo
2006	เด็กหอ (Dek Hor)	Dek Hor	2010	กระดีบ (Kraduep)	Cool Gel Attacks
2006	โภสเคละโยม (Koe Thoe Yom)	See How They Run	2010	หวานมีน้อย (Guan Muen Ho)	Hello Stanger
2006	เพราฯ อาทิต เปลี่ยนแปลงบอย (Phror Arkad Plian Plang Boi	Seasons Change	2012	ATM เออร์ก เออร์ (ATM Er Rak Er-Ror)	ATM Er Rak Error
2006	หมากเตะ รีตีร์น (Mak Tae Return)	Lucky Loser	2012	รัก 7 ปีดี 7 หน (Rak Jet Pi Dee Jet Hon)	Seven Something
2006	แก๊งช่านีอีแอบ (Gaeng Cha-Nee Kub Ee-Aeb)	Metrosexual	2014	คิดถึงวิทยา (Khit Thueng Witthaya)	Teacher's Diary
2007	สายลับจับบ้านเล็ก (Sai Lap Jup Bahn Lek)	The Bedsie Detective	2014	ฝากไว...ในก้ายเออ (Faak Wai... Nai Kaai Thoe)	The Swimmers
2007	ตีดสู้ฟุต (Tat Soo Foot)	Kung Fu Toosie	2020	ย้ายคนหล่อลง (Aai... Khon Lor Luang)	The Con-Heartist
2008	สีแพร่ง (See Praeng)	4 Bia	2022	เร็วหอด...เมื่อันกรธเรอ (Reo Hoot... Muan Groot Ther)	Fast & Feel love

Data Analysis

To analyze the data, percentage was used to compare the Baker's translation strategies employed by humans and AI. The Baker's translation strategies are as following:

1. Translation by a more general word (MG)
2. Translation by a more neutral/less expressive word (MN)
3. Translation by cultural substitution (CS)
4. Translation using a loan word (LW)
5. Translation by paraphrase using a related word (PR)
6. Translation by paraphrase using an unrelated word (PU)

7. Translation by omission (OM)

8. Translation by illustration (IT)

The Index of Item-Objective Congruence (IOC) was used to validate the translation results by experts. The expert panel included the teacher who obtained a master's degree in translation and the other two teachers who obtained doctoral degrees in applied linguistics.

Findings

Table 2 below displays the results of using Baker's translation strategies in the official versions.

Table 2 Baker's strategies used in the official version translation

	MG	MN	CS	LW	PR	PU	OM	IT	Total
Official version	30%	25%	25%	5%	5%	10%	-	-	100%

Table 2 illustrates the results of the Baker's strategies used in the official version translation. It is clear that the official version translation uses translation by a more general word (MG) the most at 30 percent during the translation process. Moreover, the official version translation uses various methods, including cultural substitutions and neutral words. The second-ranked methods are translation by cultural substitution (CS) and translation by the use of a more neutral word (MN), both of which account for 25% of cases. However, the translation by omission and illustration are not used in the official version.

To answer the second research question, which is “Are there any variations in the translation of movie titles by ChatGPT and Google Gemini when using different prompts to translate them in accordance with Baker's translation strategies?” The two different commands used can be displayed below:

- The first prompt is “Translate this name into the name of the movie.”

- The second prompt is to act as an expert translator who is competent in movie titles and speaks both Thai and English fluently and possesses extensive knowledge of the cultures of both markets. Your main job is to come up with original, economically successful English movie titles for the Thai film business that appropriately show the genre and tone of the movie for a Western English-speaking audience.

The results of using two different commands in ChatGPT and Google Gemini to translate Thai movie titles into English versions can be presented in Table 3 below:

Table 3 Baker's strategies used in the ChatGPT and Google Gemini with two different commands

AI translation tools	MG	MN	CS	LW	PR	PU	OM	IT	Total
ChatGPT 1 st prompt	15%	10%	-	5%	55%	15%	-	-	100%
ChatGPT 2 nd prompt	15%	25%	10%	5%	15%	15%	15%	-	100%
Gemini 1 st prompt	15%	30%	5%	5%	35%	5%	5%	-	100%
Gemini 2 nd prompt	30%	30%	10%	5%	5%	15%	5%	-	100%

Table 3 displays the results of translation of movie titles from ChatGPT and Google Gemini with two different commands. It can be concluded that translation by paraphrase using a related word (PR) ranked the highest with 55 percent with the first prompt of ChatGPT and 35 percent with the first prompt of Google Gemini. However, it is observable that translation by a more neutral word (MN) achieves a second-place ranking with 30 percent when employing the second prompt with both ChatGPT and Google Gemini. The findings also suggest that using the second prompt with both ChatGPT and Google Gemini leads to an increased use of translations employing more general and neutral words, while the percentage of translations using paraphrases with related words decreased significantly compared to the first prompt.

To answer the third research question, which is, “What are the differences between the translations of movie titles in the official and the artificial intelligence versions?” The comparison of the translation of the movie titles between the official version and AI translation versions based on Baker's strategies can be presented in Table 4 below:

Table 4 Comparison of Baker's Translation Strategies used by official and AI Translation

Translation tools	MG	MN	CS	LW	PR	PU	OM	IT	Total
Official version	30%	25%	25%	5%	5%	10%	-	-	100%
Google Translate	20%	20%	10%	10%	25%	15%	-	-	100%
ChatGPT 1 st prompt	15%	10%	-	5%	55%	15%	-	-	100%
ChatGPT 2 nd prompt	15%	25%	10%	5%	15%	15%	15%	-	100%
Gemini 1 st prompt	15%	30%	5%	5%	35%	5%	5%	-	100%
Gemini 2 nd prompt	30%	30%	10%	5%	5%	15%	5%	-	100%

Table 4 demonstrates the percentage of the Baker's translation strategies used by the official version, Google Translate, ChatGPT, and Google Gemini with two different commands. Translation with a more general word (MG) appears to be used the most at 30 percent by the

official version and the second prompt of Google Gemini. However, translation by paraphrase using a related word (PR) is used the most with the first prompt of ChatGPT at 55 percent and Google Gemini at 35 percent, respectively. Translation by cultural substitution can be seen in the official version with the second rank at 25%, Google Translate at 10%, the second prompt of ChatGPT and Google Gemini at 10%, and the first prompt of Google Gemini at 5%, but it is not applied in the first prompt of the ChatGPT translation version. The official version, Google Translate, and ChatGPT's first prompt show no use of translation by omission (OM). Moreover, none of the translation tools applies translation by illustration (IT).

Discussion

This study was intended to investigate the strategies outlined by Baker in the official human-translated version and to determine whether using two different commands or prompts with ChatGPT and Google Gemini would produce different results when translating Thai movie titles. Finally, this study also attempted to compare the translation strategies used to translate Thai movie titles between the official version and those generated by AI translation tools, including Google Translate, ChatGPT, and Google Gemini, in accordance with Baker's translation framework. The findings revealed that there were distinctive strategy preferences between the official versions and the AI translation and even among the different AI translation tools and prompts.

To answer the first research question, the analysis of the official version of the translation of Thai movie titles, assumed to have been translated by a human, revealed that translation by a more general word (MG) is the most frequently used strategy. For instance, they translated the movie title "Khit Thueng Witthaya" as "Teacher's Diary" instead of the direct translation version, which would have been "Miss Witthaya." This implies that official translators generally choose a simpler, more general English word to convey across the main idea of the Thai title, considering clarity and attractiveness above the priority of direct linguistic substitution. This is in line with the study of Zaid and Bennoudi (2023), which demonstrated that the translation performed by a human can preserve depth, cultural relevance, and complicated understanding. Moreover, human translation can also preserve essential cultural elements.

To answer the second research question, the findings suggested that different prompts significantly affected translation by AI. It is evident that translation by paraphrase using a related word (PR) is used remarkably in the simple prompt (1st prompt) by both ChatGPT (55%), Google Gemini (35%), and Google Translate (25%). This study suggests that AI translation with a simple prompt maintains the structure and meaning of the source text through the use of related vocabulary. For instance, ChatGPT translated the movie title "เพราะอากาศเปลี่ยนแปลงบ่อย (Phror

Arkad Plian Plang Boi)" as "Because the symptoms keep changing," while Google Gemini translated it as "Because the weather is so changeable." Moreover, Google Translate presented as "Because the weather changes" which also demonstrate similar strategy. This case demonstrates the use of direct vocabulary to translate because "อากาศ" (Arkad) means "weather," and "เปลี่ยนแปลง" (Plian Plang) refers to "change" in English. This result is congruent with the study of Pasaribu and Siregar (2022) and Al-Wasy and Mohammed (2024), concluding that AI translation used paraphrasing with a related word and loaded words the most.

Furthermore, we observed that the results varied when we used the second, more detailed prompt. Both AI utilized different strategies. Translation was done by using more general (MG) and neutral (MN) words. This translation technique possibly indicated that AI attempted to replicate human translation by preserving tone and conforming to genre when they were instructed. The illustration of this practice can be seen in the example of the translation of the movie title "สายลับจับบ้านเล็ก (Sai Lap Jup Bahn Lek)." It was translated as "The Bedside Detective" by the official version, which is close to the translation version from the second prompt of ChatGPT (The Mistress Hunger) and Google Gemini (The Bedside Detective). This approach conforms with the study of Hakami and Abomoati (2024), which explored the effect of using different prompts in AI chatbots. The finding revealed the complexity and limitations of AI chatbot idiomatic expression translation, which vary by prompt and AI model.

To answer the third research question, the findings revealed that the official translation consistently utilized the cultural substitution (CS) at the highest of 25% when compared to AI translation tools, which only include this technique at 10%. This is in line with the conclusion of Al-Wasy and Mohammed (2024), who found that human translators outperform AI models in cultural replacement. Moreover, the process of creating the movie title requires participants to collaborate together, be aware of different cultures, and know the market, leading to a more strategic use of cultural substitution (CS) and translation by using more general words (MG) to ensure that the title is both appropriate and profitable (Futeng, 2024; Maharani et al., 2025).

In contrast, AI translation tools using the simple first prompt prioritized paraphrasing with a related word (PR) over other methods. This demonstrated the failure to capture the necessary cultural aspects, which led to the question of how AI could preserve the cultural relevance and attract the interests of the audiences. However, the findings from the more complicated prompt (2nd prompt) showed that the translation versions were more explicit and closely captured the same meanings as the official version did. It can be observed that the second prompt demonstrated a path of improvement in translation because it showed that AI utilized the translation by using more general word (MG) and neutral word (MN), which are likely close to the official version.

Conclusion

This research investigated the application of Baker's translation strategies between the official version and artificial intelligence, specifically Google Translate, ChatGPT, and Google Gemini. It also endeavored to determine whether there were any translational influences between the simple and detailed prompts for issuing a command to a specific AI. The results indicated that the official version's most frequently employed strategy is to translate the Thai movie titles using a more general term (MG). The simple prompts of ChatGPT, Google Gemini, and Google Translate were the most frequently used for translation by paraphrasing a related word. This suggests that these tools tended to rely on a word-level focus, which may have led to an accurate translation but may not have included enough cultural aspects and emotive appeal to captivate audiences. Finally, the AI displayed that there were big variations between the simple and more complicated translation instructions. The basic prompt displayed similar results by using related words for translation, but the more detailed prompts offered more advanced translation versions.

Recommendations

Based on the findings of this study, it is recommended that detailed prompts be given to AI to influence word-level translation, which can cause misinterpretation or loss of nuance if users overlook prompt clarity. Contextually appropriate instructions to AI are a crucial factor in improving linguistic clarity. Moreover, when users understand the strengths and limitations of AI translation systems, human-machine collaboration in translation can be significantly enhanced, leading to higher cultural accuracy.

For further research, future studies may investigate how different levels of comprehensive prompts influence AI translation outcomes across various text genres, such as literary, audiovisual, or technical materials. Studies could also explore how culture-specific or style-focused guidance may affect the AI's selection of major theorists' translation strategies.

References

Ahrenberg, L. (2017). Comparing machine translation and human translation: A case study. In RANLP 2017: *The First Workshop on Human-Informed Translation and Interpreting Technology (HiT-IT)* (pp. 21-28). Association for Computational Linguistics.

Al-Wasy, B. & Mohammed, O. (2024). Strategies of translating euphemistic expressions from Arabic into English: A comparative study of artificial intelligence models with human translation.

Journal of Educational Sciences and Humanities, 40, 826-855.
<https://doi.org/10.55074/hesj.vi40.1121>

Baker, M. (2018). *In Other Words: A Coursebook on Translation* (3rd ed.). Routledge.

Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education. *Educational Technology & Society*, 25(1), 28-47.
<https://www.jstor.org/stable/48647028>

Fadwati, A. (2021, November). Baker's Strategy in translating idiomatic expressions in Fast & Furious: Hobbs and Shaw's movie subtitles. In 6th International Conference on Science, Education and Technology (ISET 2020) (pp. 198-204). Atlantis Press.

Futeng, Z. (2024). Intercultural communication and collision in the movie Industry. *Academic Journal of Humanities & Social Sciences*, 7(3), 161-165.
<https://doi.org/10.25236/ajhss.2024.070325>

Habibi, V. R. (2025). The application of Nababan's TQA and Mona Baker's translation strategies of translating cultural words and in movie subtitle "Puss In Boots: The Last Wish". *JELL (Journal of English Language and Literature) STIBA-IEC Jakarta*, 10(01), 215-224.
<https://doi.org/10.37110/jell.v10i01.271>

Hakami, A. H., & Abomoati, G. S. (2024). Exploring the impact of prompt formulation in AI Chatbots on the translation of English-to-Arabic and Arabic-to-English idioms: A case study. *Pakistan Journal of Life and Social Sciences*, 22(2), 21371-21381.
<https://doi.org/10.57239/pjrss-2024-22.2.001508>

Kanchanakas, P., & Rungruangthum, M. (2024). An Investigation of Translation Accuracy by Google Translate from English Idioms to Thai at Sentence Level. *Journal of Humanities and Social Sciences for Sustainable Development*, 7(1), 75-88. Retrieved from <https://ssrujournal.com/index.php/hssru/article/view/289>

Koehn, P. (2020). *Neural machine translation and its impact on professional translation*. Language Science Press.

Maharani, N. M. D., Duriga, T. S., Barus, E. B., & Aryani, I. G. A. I. (2025). Lost and Found in Translation: Examining the English Version of Perahu Kertas. *JETLEE: Journal of English Language Teaching, Linguistics, and Literature*, 5(1), 84-97.
<https://doi.org/10.47766/jetlee.v5i1.4972>

Moneus, A. M., & Sahari, Y. (2024). Artificial intelligence and human translation: A contrastive study based on legal texts. *Helijon*, 10(6), e28106.
<https://doi.org/10.1016/j.helijon.2024.e28106>

Pan, J., Wong, B. T., & Wang, H. (2022). Navigating learner data in translator and interpreter training. *Babel Revue Internationale De La Traduction / International Journal of Translation /*

Revista *Internacional De Traducción*, 68(2), 236–266.
<https://doi.org/10.1075/babel.00260.pan>

Pasaribu, A. E. A., & Siregar, M. (2022). Translation strategies of subtitling Java Heat Movie. *Ling Lit Journal Scientific Journal for Linguistics and Literature*, 3(1), 24-30.
<https://doi.org/10.33258/linglit.v3i1.623>

Saeed, A., & Hameed, S. (2024). Exploring the challenges faced by translator trainees in translating scientific and technical texts between Arabic and English: An error analysis approach. *Journal of Social Studies*, 30(3), 73-97. <https://doi.org/10.20428/jss.v30i3.2547>.

Seifi, S., Kargozari, H. R., & Arghiani, M. R. (2022). Baker's strategies applied in translation of Idioms in Persian dubbing of selected movies in comedy genre. *Journal of Research in Techno-based Language Education*, 2(2), 18-30. <https://doi.org/10.22034/jrtle.2022.150885>

Shahmerdanova, R. (2025). Artificial intelligence in translation: Challenges and opportunities. *Acta Globalis Humanitatis Et Linguarum*, 2(1), 62–70. <https://doi.org/10.69760/aghel.02500108>

Sukwises, A., Yodchim, S., Sukamolson, S., Chakorn, O. O., Ngiwline, P., & Krudthong, K. (2024). Techniques for culture-specific Item translation in Sepha Khun Chang Khun Phaen. *Journal of Humanities and Social Sciences for Sustainable Development*, 7(2), 5-22. Retrieved from <https://ssrujournal.com/index.php/hssru/article/view/183>

Syavira, N. W., Sinaga, I. M., & Noryatin, Y. (2025). Comparing human translation with DeepL translate in translating idiom of Wednesday series. *Jurnal Bahasa Asing*, 18(1), 85-100. <https://doi.org/10.58220/jba.v18i1.111>

Wongseree, T. (2021). Translation of Thai Culture-Specific words into English in digital environment: Translators' strategies and Use of technology. *rEFLections*, 28(3), 334–356. <https://doi.org/10.61508/refl.v28i3.254613>

Yanisky-Ravid, S., & Martens, C. (2019). From the myth of Babel to Google Translate: Confronting malicious use of artificial intelligence—Copyright and algorithmic biases in online translation systems. *Seattle University Law Review*, 43(1), 99–168. <http://dx.doi.org/10.2139/ssrn.3345716>.

Yuxiu, Y. (2024). Application of translation technology based on AI in translation teaching. *Systems and Soft Computing*, 6, Article 200072. <https://doi.org/10.1016/j.sasc.2024.200072>

Zaid, A., & Bennoudi, H. (2023). AI vs. Human Translators: Navigating the Complex World of Religious Texts and Cultural Sensitivity. *International Journal of Linguistics Literature & Translation*, 6(11), 173–182. <https://doi.org/10.32996/ijllt.2023.6.11.21>